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OBJECTIVES

After studying thisunit, you will be ableto know

about the-

=Differential Geometry.

= Space Curves.

= Tangents.

= Contact of Curve and Surfaces.

=Osculating Plane.



! | INTRODUCTION

Differential geometry is that part of geometry which is treated with the
help of differential calculus. There are two branches of differential
geometry:

L ocal differential geometry: In which we study the properties of curves
and surfaces in the neighborhood of a point.

Global differential geometry: In which we study the properties of curves

and surfaces as awhole.



SPACE CURVE

A curve m space 15 defined as the locus of a pomt whose cartesian coordmnates are the functions
of a smgle variable parameter 1. say.

We can represent a space curve m the following two ways :

As intersection of two surfaces :

Let f; (x, 3 2) = 0./, (x, 3, 2) = 0 be two surfaces then these equations together represent the
curve of mtersection of the above surfaces. If this curve lies i a plane then it 1s called a plane curve.
otherwise 1t 15 called to be skew. twisted or tortous.

For example. if f; (x, 3, z) = 0. represents a sphere and £, (x, 3, 2) = 0 represents a plane then

these two equations together represent a circle.



Parametric representation :

If the coordmates of a pomt on a space curve be represented by the equations of the following
form
11,0, y=4,00. 22,0 (120
where f,. f,. f; are real valued functions of a single real variable 7 ranging over a set of values
ast<bh.

The equation m (1.2.1) are called parametric equation of the space curve.



VECTOR REPRESENTATION OF SPACE CURVE

If 7 be the position vector ofa current pomt A on the space curve whose cartesian coordianates

be x, 1, z then we know that

F=ﬁ+ﬁ+ﬁ
or P =fOi+ O]+ L0k
or F=r(
or F =, 0. £, (0. £, () (12.2)

where /15 a vector valued function of a single vanable 7. Thus space curve may be defined as :
A space curve is the locus of a point whose position vector 7 with respect to a fixed origin

may be expressed as a function of simgle parameter.
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UNIT TANGENT VECTOR OF & CURVE

Consider two neighbouring pomts 4 (x, v, 2) and B (x + dx. v + v 2+ &6z) on a curve C whose

position vectors are 7 and 7 + &r, respectively. We have

B(x+0x, y+ 0y, Z+ 62)



AB =OB-O0A=F +§ -7 =57

Let 8s be length of arc 4B measured along the curve and arc P4 = s 15 measured from any

convenient pomt P on the curve.

4B oF
‘E ‘ ~ Chord 4B

Unnit vector along chord 4B =

~ or Arc AB
os Chord AB

(1.23)

But as B tends to 4. then the chord 4B tends to be tangent at P.

Arc 4B

- r Iim ———=1
Alko we know that B—4 Chord AB



5 ArcAB  dF

Hence. umit vector along tangenfat 4 = lim —- =—.
B—4 85 Chord AB ds

_dF _
ds

Unit tangent vector at 4 is denoted by ; and 1s taken m the direction of s increasmg
If F={xy,2) ie. Fz.\:f+j‘f+:kﬂ
i F:dF:{‘?[T-d,1“d:]

ds \ds ds ds
. - dx. dv - d:-
LE. f:—;_|__JH__,ELr

ds ds ds

Smce ; 15wt tangent vector. ‘ t ‘:1.

(12.4)
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THE EQUATION OF TANGENT LINE TO A&
CURVE AT A& GIVEN POINT

The tangent line to a curve at any pomnt 4 1s defined as the lmutmg position of a straight line
through the pomt 4 and a neighbourmg pomt B on the curve as B tends to 4 along the curve.




Let 7 =7(s) be the parametric equation of a curve and 4 be any point on it whose position

- dr
vector is 7* and a unit tangent vector at A be denoted by 7 = o

=7,

Let P be any point on the tangent line at A whose position vector is R (say).

Alo 4p =yt where ‘ AP ‘: w

But OP =04+ AP

i - —

R=r+wt O R=r+wp (12.7)
Equation (1.2.2) @ives us the equation of tangent line at A.
Tangent lme m cartesian form :

We may write F=xi+yj+zk

= F=xi+v j+ck



and R=Xi+Y j+7Zk

Substitutmg these valie in equation (1.2.2) of tangent Ime, we get
Xi+ }jr + Zk = xi +J;}'+ -k +-:*(:r'r: +_1‘§'+:-'A:]
or Xi +}_’;r:+ZA: = (A‘+cx')f+[_1-'+c}-"}j+(:+£:‘)ﬁ§.
where ¢ 1s a non-zero constant.
Equating coefficients of ; J:k from both sides

X=x+ex, Y=y+cy, Z=z+cZ

Xo=x Yy -z

1.e. 7 7 "I c,

X=x ¥-y Z-2

Le. . ¥ X ...(1.2.8)

This 1s the required equation of tangent lme at (x, 3, ) and direction cosmes of the tangent line

are proportional to x'. v/, 2.



~ EQUATION OF TANGENT LINE WHEN THE
EQUATION OF THE GIVEN CURVE IS GIVEN AS
THE INTERSECTION OF TWO SURFACES

Let the equation of two surfaces are
Fi(x,32)=0andF,(x, 3 2)=0 ::41:2:9)
where x, v, - are functions of a parameter.
- 5ﬁ_df+iﬁi_dy+5ﬁ_d::0
ox dt oy dt ¢z dt

ol 12.10)

ok, dr+3FE af1‘+EF2 d:_o
T (1.2.11)




Hence from equation (1.2.3) and (1.2.4)

X ¥ Z
OF OF, 0K OF, COKCF, OFOF, COF0F, OF 0OF

- - -

oy 0z 0z @y @z Ox Ox 0z  Ox Ov Qv Cx
which are the direction ratios of the tangent and dot represents differentiation w.r. to ‘"
Therefore, the equation of tangent line at a pomt (x, y, z) on the curve of mtersection of the two
grven surfaces 1s given as
X-x -y Z-:
0F 0F, 0F 0OF, ) OF 0F, CR CF,  0F 0F, CF CF,
oy 0z @ | ¢y 0z ox  Ox o oy v oy




DIRECTION-COSINES OF THE TANGENT LINE

Let A (x, v, z) and B (x + &x, v + &1, - + &z) be adjacent points on a given curve m rectangular
coordmate axes. & the measure of chord 4B 1s given by
572 = &x2 + §y2 + 62
Let s be the length of the arc measure from some fixed pomt P to any pomt 4 on the curve.

If the measure of the arc AB ofthe curve be &s then

HRGRHEE]

' lim =
Smee B4 Arc AB

Bkt
l=| — | +| —
ds das

2 [a’:]i
L 4 e ()
ds




ds\* (dxY dv T AR
or — | = — | | —| | — Z‘."|
dt L dt dr dt

Hence =it yytes ..(1.2.14)

, . dx
where x, v, z are functions of fand & = & etc.
[

But x, v, 2 are direction ratios of a tangent Ime therefore the direction cosies of the tangent

lme at 4 are
Xy 2z dx dv d:
—.—.— 0 —
5.8 ds ds ds
i dF_dx;erijrd:é
ds ds ds ds

The direction cosines of the tangent line are x', v'. 2’ which are the components of 7' where a

prime denotes differentiation with respect to 5. Clearly ‘ 5 ‘ =1 ie 7 is unit vector along the tangent.



Examples:

Ex.1. Find the equation fo the tangent at the point B on the circular helix
x=acosB.y=asmbB.z=C86

Sol. The vector equation of the hehx 15 grven by
F:ﬂcnsﬂf+ﬂsinﬂj+6 ok
7 =—asinBi +acosBj +C i

The equation of the tangent m given by

R=rF+ii
or }E:(ncnsﬁ f+rrsi118,f+[*ﬂ£)+h(—ashlﬂ f+ac05E}j+Cﬁ})
If R=Xi+Y+ZFk.

then  Xj+¥j+Zk =a(cos®—2sin®)i+a(sin®+rcosB) j+C(6+2) k

. : X —acos® Y —asmb Z-C6
which grves . = = .
—asméb dcos o C

It 1s the requmred equation of tangent line.



Ex.2. Show thar the tangent at any point of the curve whose equations are

X = 31‘,}-‘231‘2,::2:‘3

makes a constant angle with line
=g gr=o),
Sol. The direction-rations of the tangent at “t’ to the given curve are
3, 61, 612 (ie, % 3.2)
The direction ratios of the given hine are
1.0.1.
If 6 be the angle between the tangent and the grven lne, than

3x1+6tx0+6t*x1

[J9+36r2+36ﬁ)[dl+0+1)

cos O =

3(1+27%) 1

- \EKS(I—i—ZFE) 2

which 1s mdependent of 7. hence 6 1s constant.



CONTACT OF CURVE AND SURFACES

We know that m a plane curve the tangent at 4 15 the Imutmg position of the chord 4B when B
comcides with 4. In a siilar manner if 4. 4,. .... 4, ., be pomts on a given curve lymg on a given
surface and if 4,. 4;. ..., 4, all comcide with 4,. than we say that a curve has a contact of nth order
with the surface at 4;. We may also say that the curve and the surface has (n + 1) pomts of contact.

1.3.1 Definition :

If4. 4. 4,.... 4, ponts on a given curve lie on a given surface and 4,. 4,. ... 4, comcide

with A. then curve and surface are said to have the contact of nth order at the pomt A.



CONDITION FOR & CURVE AND A SURFACE
HAVE A& CONTACT OF nt* ORDER

Let the equation of the curve C be given by

r={x{.y(®.z().} ik Bida k)
and the equation of the surface S be given by
fx,32)=0 r(1.3.2)

The values of 7 corresponding to the pomts of mntersection of the curve C and surface S are the

roots of the equation

F(O=fix@.v(.z(5)} =0 i £:3.3)
Let 1= 1, be aroot of the equation F'(7) = 0 so that
F(1,)=0. (1.3.4)

Then =1, give as a pomt of mtersection of C'and .
Put r=1f,+h so that
Eg=F(t,+h). ....(1.3.5)



Expandmg F (r) about 7, by Taylor’s theorem. we get

W &

F(f):‘r(fn)”"ﬁ(fu)JfEF( fy )+ EF( §) 4, ..(1.3.6)

Smce 7, 15 a solution of the equation (1.3.4) therefore F (7,) = 0. then we have

B op i B
F(t)= hF(rﬂ}+E [rﬂ)+EF(rﬂ]+.... (1.3.7)
We have the followmg cases :

i) IfF (£, ) = 0. then we say that the curve and the surface have a simple intersection at 7

(1y).



i) I F (7,)=0. but F(rﬂ ) =0, then F (7) is of second order of  and we say that 7, is a

double zero of F () and m this case C and S have two pomfs of contact (or contact of first
order) at ' (f).
(i) If F(t,)=0.F (f,)=0. but F(t,)=0. then F (1) is of third order of i and we say that

fo 15 a triple zero of F (1) and i this case we say that C'and § have three pomt contact or

contact of second order.
(iv) In general if F[rﬂ]: {].F[ID Je= (... P (75)=0. but 7 (r)) # 0, then F (r) 1s of nth

order of /1 and we say that C and S have a # pomt contact or contact of (77 — 1)th order.



INFLEXIONAL TANGENT

A straight Iine which meets the surface S m three comcident pomts 7.e., 1t has a second order

pomt of contact 1s called mflexional tangent to the surface at that poimt.

Example: Find the plane that has three point contact at the origin wirh the curve

¥

x=r-1, v=8-1, z=£2-1.
Sol. Let the equation of the plane at the origin be
Ix+my+pnz=0 L. (1)

The equations of the given curve are

=1 y=8-1, 2= s (2)
At origm,

-1=0, £P-1=0. #-1=0.
Clearly. 7= 1 satisfies all of these three equations. Hence. at the orign. we have 1= 1.
Now the pomts of mtersection of the curve (2) and the surface (1) are given by the zeroes of the

fimction



F(Hh=1(*-D+m @B -1 +n@E-1)
or FO=itt+me+ntt=I-m—-n

For three pomt contact. we should have
F(t)=0.F(t)=0.
Now F=41F+3mP+2nm=0

and F=1212+6mt+2n=0

At the origin 7.e. at r = 1. the equation (4) and (5) become
4+3m+2n=0,12]+6m+2n=0

Solving equation (6). we get

m A

i
3-8 6

Hence the required equation of plane is

dx—syp+ bz=1),

.(3)

e
.(5)

..(6)



OSCULATING PLANE

Definition : The osculating plane at a pomt P of a curve C of class greater then or equal to two
1s the lmuting position of the plane passing through the tangent line at P and a neighbouring pomt Q on
the curve C as O—P. (or which contains the tangent line at P and is parallel to the tangent at O as
Q —P).

Alternative : Let P O, R be three pomts on a curve C. the lmifmg position of the plane POR.
when Q and R tend to P, 1s called the osculatmg plane at the pomt P.



EQUATION OF OSCULATING PLANE

Fig. 1.3
Let =7 (.5) be the given curve C of class = 2, m terms of parameter 5. where s 15 the length of

the arc of the curve measured from a fixed pomt on it. Let P and Q be two neighbourmg pomts on the



curve C with 7 (3] and 7 (5 + 35 be their position vectors. Let R be the position vector of current

pomt R on the plane confammg the tangent lme at P and the pomt Q.

—_—

Here OP :F(g-),E:F(3+65],ﬁ=é
Hence PQ =00-0P =7(s+8s)-7(s)
and PR =OR-0P=R-F(s)

Again if 7 be the unit tangent vector at P,

d}: —=
—E—r (5).

Now the vectors PR.f and E are coplanar Iving m the plane POR and hence therr scalar triple

then, /

product is zero.

[PR. . PQ] =0 (141



of [R—F{s) F (5},?[3+55}—F(s)]:[}

but F(s+5¢}—F[s):f(s)ﬁwF"{s}(aﬂz +..
|2

We know that [a D ¢c]=a-(D x ).

Equation (1.4.2) may be written as

[f_\i—F(S)}-F'(S)H[F(S-I—SS)—F(&')]29

form (1.4.3) and (1.4.4)

..(142)

.(143)

(144

(145



2

N - - O
or [R—*’(S)]'F{S)K J [5)( Q)

+ terms of higher order of s |=

or | R=F(s) |- 7 (s)x[F"(s)+0{8s}]=0 e (14.6)

The plane POR tends to be the osculating plane when O tends to P i.e. when 65 — 0, and
hence the equation of the osculatmg plane 1s

—

R=F(s)|-7(s)xF"(s)=0

i

or | R—F(s).7"(5).7"(s) |=0 (14.7)

Equation (1.4.7) represents the equation of the osculating plane m terms of parameter s of the

pomt P.



quation of the osculating plane in terms of general
param etert
Let P (r) and O (1 + &) be the two neighbouring pomts on curve C. Let position vector of P and
Obe i (t) and 7(t+05f) with respect to origin. respectively.
The tangents at P and O will be parallel to the vectors 7 (r) and 7 (7+81). respectively.

Therefore the plane through the tangents at P (r) and Q (7 + &r) 1s perpendicular to the vector

F(r)xF(t+3t)

or to the vector ?(r]x[ﬁ(war}—?’[rﬂ [ F(r)w"}[.f}zi}]

. . F(t+81)=F(1)
i.e. tothevector 7 (7)x S e (1.4.8)

As O — P. 6f — 0 m this unit the osculating plane is perpendicular to the vector r ( r] X F (7).

If R be the position vector of any current point on the osculating plane. the equation of the

osculating plane may be written as

= |
|
~|
e —
B 3
%
]
I
o
o
=
|
|
~i
]
~
L 1
Il
o



Equation of the osculating plane in terms of cartesian
coordinates

Let the coordinates of a point P on a given curve C be (x, v, 2) and coordmates of any current

pomt be (X ¥ Z). these are functions of a parameter 1.
Then F=xi+y+zk

and R=Xi+ Tj+ Zk
Substituting these values m (1.4.9) the equation of the osculatmg plane is given by

[(X—x)f+(Y—_v)j+(z—:)A”::&h_i;?+:'A3..ff+j;f+;ﬂ={]

X-x Y-y Z-z
£ p oe=w (14.10)

or
X ¥ Z

which 1s the equation of the osculating plane at a pomt P (x, 1; 2).



Theorem : To show that when the curve is analviic, there exists a definite osculating plane

at a point of inflexion, provided the curve is not a straight line.

Proof : We know that 7 (=7 ) is a unit tangent vector, therefore 7> =1. . (1)
Differentiatmg w.r.t. 5" we get

2.7"=0 or F.F=0 . (2)
Agam differentiatmg, we get

PP+ =0

Ay (3)

(At a pomt P where 7" = 0. the tangent line is called inflexional and the point P is called the
pomt of mflexion. )
If 7" = 0. then 7 is linearly independent of 7”. Differentiating successively (3) and applying. above
argument shall get
FEm=0. m>2

where 7™ 1s the first non-zero dervative of 7 at P.



Therefore if 7" = 0. from equation (1.4.3), we get

(8s)"

F(s+8s)-r(s)=

7 (5]+UI(85)m+1} .05

m

Hence the equation of the osculatmg plane at P 1s
[E—f(s)f'(.s-),f’”(.s]}=0 ..... (6)
Again if for all m > 2 the derivative 7" =0, we conclude 7(=7) is constant (since the curve

under consideration 1s analytic) 7.e. the tangent vector 1s same at each pomt of the curve and hence the
curve 1s a straight Ime.
Hence equation (6) 1s the equation of the osculating plane at a pomt of mflexion P when the

curve 1s not straight Ime.



To find the osculating plane at a point of a space curve given
by the intersection of two surfaces

Let the equations of the surfaces be

f(7)=0 and g(7)

The equations of the tangent planes of these surfaces are given by

0 (14.11)

[E—F)-?f:{] and (E—F)-?g:[} ..... (1.4.12

where y fand y g are normal vectors to f(7)=0 and g (7 )= ( respectively and R be the position

vector of current pomt on the plane.

The equation of the plane through the tangent line to the curve of mtersection of the two sui-

faces 15

F=(R-F)-Vf-%(R-F)-Vve=0 . (1.4.13)

If (1.4.13) be the equation of the osculatng plane at P, it must have three pomt contact with the

curve at P. Therefore the required conditions are



F=0.F=0.F=0: . (1.4.14)

when R =7 and dashes denote differentiation with respect to parameter ‘7.
F =(gmes
RVf+(R-F)-(Vf) -1 R-Vg-1(R-F)-(Vg)'=0 . (14.15)
At PR =7, condition (1.4.12) reduces to
¥F.Vf-AF.Ve=0 .. (1.4.16)
But we know that 7 is a tangent vector and V/ and Vg are normal vectors to f(7)=0 and
¢(7) =0 and hence both
¥.Vf=0and7-Ve=0 .. (1.4.17)
Hence F =0 reduces to an identity.

Now consider the condition F = 0 at .}_?: = 7. we have

7 Vf=0-L7F-Vg=0



or

=

A=

=

Now differentiating the equation (1.4.17). we get

or

FVf+F-(Vf) =0, 7-Vg+7-(Vg) =0.

VS ==r(Vf)

and FVg=-7-(Ve)

=
1}
[ S

ﬁ-w :"_}'(Vf}tzﬁ._, from (1.4.18)
r-Ve r(Vg)

Puttmg the value of . m (1.4.13). we get

...(1.4.20)



-

(V)

=l

(R-7)Y _
= P
(R-7)-Vg — F(Vg)
(fﬁ—r:)-?f_(}%—i")-?g

. F(vf) F(Ve)

form (1.4.20)

=]

Above equation represents the equation of the osculatmg plane at P.

Cartesian form :

Let f(F)=f(x.r.z).g(F)=g(x..2)

R=Xi+Yj+Zk. F=xi+vi+:zk

k1431



p————_

Vf:[?i}fdr[g]ﬁ zle

ax) \ov

Vf=f,i+f, j+fik
= (‘Ff}::Z(in-jtfn.ijrfﬂf}f

substitutmg m equation (1.4.21) of the osculatmg plane, we get
(X_‘T]tfx+[r_-1’]-jﬂ.],'+(Z_:]f: K [X_I)gx_i_(y_-l!)gy+(Z_:]g:

(.tzfﬂ+...+lf:f fw+] (.i'zgn+...+2_1'f:' g, +]

(1422)



Example: For the ciirve x = 3t. v = 3%, 2= 28, show that anv plane meets it in three points

and dedice the equation to the osculating plane at t = .

Sol. Let the equation of the plane be

Ax+tB8yt+eeE+rbhb=% g (1)
F(N=34t+3Bt2+2CA+D=0 n(2)
which 1s cubic m 7. Hence the plane meets the given curve m three pomits.
Alo x=3, =6t =6t
=0 V=6 2=1X e kD)

Hence the equation of osculating plane at the pomt 7, is

x=3; ¥ —3?12 Z— 2!13
61y 6r; |=0
6 12t,

or Erllx =2Ly+E= 21‘13 is the required equation of the osculating plane at 7 =1,.

-



p————_
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